Trivial Jensen measures without regularity

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jensen measures without regularity

In this note we construct Swiss cheeses X such that R(X) is non-regular but such that R(X) has no non-trivial Jensen measures. We also construct a non-regular uniform algebra with compact, metrizable character space such that every point of the character space is a peak point. In [Co] Cole gave a counterexample to the peak point conjecture by constructing a non-trivial uniform algebra A with co...

متن کامل

Sobolev Regularity and an Enhanced Jensen Inequality

We derive a new criterion for a real-valued function u to be in the Sobolev space W 1,2(Rn). This criterion consists of comparing the value of a functional R f(u) with the values of the same functional applied to convolutions of u with a Dirac sequence. The difference of these values converges to zero as the convolutions approach u, and we prove that the rate of convergence to zero is connected...

متن کامل

Reduced functions and Jensen measures

Let φ be a locally upper bounded Borel measurable function on a Greenian open set Ω in Rd and, for every x ∈ Ω, let vφ(x) denote the infimum of the integrals of φ with respect to Jensen measures for x on Ω. Twenty years ago, B.J. Cole and T.J. Ransford proved that vφ is the supremum of all subharmonic minorants of φ on X and that the sets {vφ < t}, t ∈ R, are analytic. In this paper, a differen...

متن کامل

On Trivial Gradient Young Measures

We give a condition on a closed set K of real n mma trices which ensures that any W p gradient Young measure sup ported on K must be trivial the condition given is also necessary when K is bounded Introduction Assume is a smooth bounded domain in R and p is a given number Let W p R be the usual Sobolev space of maps u from to R the Jacobi or gradient matrix ru of u is L integrable and thus de n...

متن کامل

Nearly hyperharmonic functions and Jensen measures

Let (X,H) be a P-harmonic space and assume for simplicity that constants are harmonic. Given a numerical function φ on X which is locally lower bounded, let Jφ(x) := sup{ ∫ ∗ φdμ(x) : μ ∈ Jx(X)}, x ∈ X, where Jx(X) denotes the set of all Jensen measures μ for x, that is, μ is a compactly supported measure on X satisfying ∫ u dμ ≤ u(x) for every hyperharmonic function on X. The main purpose of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 2001

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm148-1-6